If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9t^2-38.64t+35.2=0
a = 9; b = -38.64; c = +35.2;
Δ = b2-4ac
Δ = -38.642-4·9·35.2
Δ = 225.8496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38.64)-\sqrt{225.8496}}{2*9}=\frac{38.64-\sqrt{225.8496}}{18} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38.64)+\sqrt{225.8496}}{2*9}=\frac{38.64+\sqrt{225.8496}}{18} $
| 2100(0.50^x)=600 | | |-18|+8=40y-|-33|-39y | | 6r+1=2r-27 | | x+3(x+2)=34 | | t=70-4.9t^2 | | 23-2p=13 | | 5•s/7=30 | | 5+x/5=20 | | ∜4-x=1.935 | | -4x(x+6)=8 | | 2100•(0.50)^x=600 | | ((n-5)/8)+((n+4)/9)=(19/36) | | 6x+21-12+3x=-6x+3=8 | | 30+75+w=180 | | 2/3c=5/5 | | (5/4+3/8x=7/6 | | y/7+6=-19 | | 2.5=k/1.3 | | 3(0.4x+0.2)=-2(0.5x-2.5) | | 8x-28=44= | | 635/32=-5/2(-11/4x) | | 26x+12=15x+45 | | 30+9x=28 | | 8(y+8)=7y+38 | | 0.50^x=0.28571429 | | 16.328=2(3.14)(r) | | 1x=-3x=3 | | 5x-3(-7x+24)=84 | | 2+t/6-3t-1/4=1-2t-5/3 | | 4x+12=-65-6x | | 12x+60=45x+1 | | n/3=-6-(-3) |